Memory Allocation and Garbage Collection in PHP

Drupal Camp Asheville 2021 1 &[IITU[?HENS

r
| 4 |8
¢ um «!
EEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEER

ENEEREEEEEEEEREEEEE
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEEE
AHR
M | Ld
AR
ARr
ARr
JEAF
I 12
L“‘ _
“"AAEEEEEEEEEEEEEEEEE B
EEEEEEEEEEEEEEEEEEE T
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEEE
AEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEE NN
AiEEnm PR
L | [[[ik
il
[11
anl

-—." .

in

1]

el IBN [
i e

pefemfem—i—1}3

b | |

Stack Memory

Memory is allocated in continuous blocks.
Type are declared when initialized and can not change.

Can not grow beyond original allocation on the stack.

Small static variables can be stored on the stack.

Memory on stack is freed once stackframe is popped off.

Stack

Memory is allocated in continuous blocks.

Type are declared when initialized and can not change.
Can not grow beyond original allocation on the stack.
Small static variables can be stored on the stack.
Memory on stack is freed once stackframe is popped off.

int main() {
int level = 1;
string name = “Jim”;
string inventory = “Sword”;
// Program continues ..

Stack

Memory is allocated in continuous blocks.

Type are declared when initialized and can not change.
Can not grow beyond original allocation on the stack.
Small static variables can be stored on the stack.
Memory on stack is freed once stackframe is popped off.

int main() {
int level = 1;
string name = “Jim”;
string inventory = “Sword”;
// Program continues ..

// error: invalid conversion of type
level = “1-27;

Stack

Memory is allocated in continuous blocks.

Type are declared when initialized and can not change.
Can not grow beyond original allocation on the stack.
Small static variables can be stored on the stack.
Memory on stack is freed once stackframe is popped off.

int main() {

int level = 1;
string name = “Jim”;
string inventory = “Sword”;

// Program continues ..

// warning: character constant too long for type
name = “Sir Jim”;

Stack

Memory is allocated in continuous blocks.

Type are declared when initialized and can not change.
Can not grow beyond original allocation on the stack.
Small static variables can be stored on the stack.
Memory on stack is freed once stackframe is popped off.

int main() {
int level = 1;
string name =

A\ Jimll ;

// Pretend inventory is a large object.
// Error: stack overflow.
char[] inventory = {...}

Memory is allocated in continuous blocks.

Type are declared when initialized and can not change.
Can not grow beyond original allocation on the stack.
Small static variables can be stored on the stack.
Memory on stack is freed once stackframe is popped off.

int main() {
int level = 1;
string name = “Jim”;
string inventory = “Sword”;
if (canAccessCave()) { ... }

}

void canAccessCave () {
int minPower = 100;
// some check to see if user can access cave

}

Stack

oo oo
O
O @, S
o
O O
O O
O
O 0O/ O
o
e OmuO

O000O0O0

Uses a pointer on the stack.

For large or complex data types.
Can be resized as needed.

Must be manually deallocated.

int main() {
int elevation = get elevation();
// Program continues...

}

int get _elevation () {
int *lon = new int (42);
int *lat = new int (75);
// do some maths or call apis. elevation
char data[] = get geo(lon,lat)

return data[O0]; Stack Heap

Uses a pointer on the stack.

For large or complex data types.
Can be resized as needed.

Must be manually deallocated.

int main() {
int elevation = get elevation();
// Program continues...

}

int get _elevation () {
int *lon = new int (42);
int *lat = new int (75);

// do some maths or call apis. elevation

char data[] = get geo(lon,lat)
return data[O0]; Stack Heap

Uses a pointer on the stack.

For large or complex data types.
Can be resized as needed.

Must be manually deallocated.

int main() {
int elevation = get elevation();
// Program continues...

}

int get _elevation () {
int *lon = new int (42);
int *lat = new int (75);
// do some maths or call apis.
char data[] = get geo(lon,lat)

return data[O0]; Stack Heap

Uses a pointer on the stack.

For large or complex data types.
Can be resized as needed.

Must be manually deallocated.

int main() {
int elevation = get elevation();
// Program continues...

}

int get _elevation () {
int *lon = new int (42);
int *lat = new int (75);
// do some maths or call apis.
char data[] = get geo(lon,lat)
return data[O0];

Stack

whatever
geographic

data
object

Uses a pointer on the stack.

For large or complex data types.
Can be resized as needed.

Must be manually deallocated.

int main() {
int elevation = get elevation();
// Program continues...

}

int get _elevation () {
int *lon = new int (42);
int *lat = new int (75);
// do some maths or call apis.
char data[] = get geo(lon,lat)
return data[O0];

elevation

Stack

whatever
geographic

data
object

Heap

e The PHP interpreteris writtenin C
e All of the aforementioned rules apply (even if it doesn’t feel like it.)

// But in PHP elements can resize after they are declared
$ducks = [“Huey”, “Dewey”, “Louie”];

$ducks[] = “Daffy”;

array push($ducks, ”“rubber”);

// And values in PHP can easily change types
$count = FALSE;

$count = 3;

$count NULL;

$count = [“one”, “two”, “three”’];

To allow dynamic variables PHP values are represented as two 64-bit words. The first word

keeps the value and the second stores metadata.

value

type type flags extra reserved
0 T 78 3132

Types (incomplete) Storage location

IS _NULL none IS_TYPE_REFCOUNTED

IS_TRUE or IS_FALSE none

IS_LONG zend_long lval

IS_ DOUBLE double dval

IS_STRING zend_string *str

IS_ARRAY zend_array *arr

IS_OBJECT

zend_object *obj

63

0 =>ZVAL

1=>ZVAL

$name = “Ada”;
$clan = NULL;
ShitPoints
S$inventory

157;
[“'sword”, “shield”];

shield

inventory ZVAL 157
hitPoints ZVAL
clan ZVAL

GETY AT/ R

Ada

Stack Heap

// Simple assignment

$a = “hammer”;
$b = $a;
$c = $b;

var dump ($a, $b, $c);
string(6) "hammer"
string(6) "hammer"
string(6) "hammer"

xdebug debug zval('a', 'b', 'c');
a: (refcount=3, is ref=0)='"hammer'
b: (refcount=3, is ref=0)='hammer'
c: (refcount=3, is ref=0)='hammer'

c ZVAL

b ZVAL

a ZVAL

Stack

hammer

Heap

//
Sa

$b =

Sc
$b

Simple assignment
= “hammer”;

$a;

$b;

= “chisel”;

var dump ($a, $b, $c);
string(6) "hammer"
string(6) "chisel"
string(6) "hammer"

xdebug debug zval('a', 'b', 'c');

a:
b:
c:

(refcount=2, is ref=0)="hammer'
(refcount=1, is ref=0)='chisel'
(refcount=2, is ref=0)="hammer'

chisel

Stack

| f hammer

Heap

//
$a
$b
$c
$b

Assign by reference
= “hammer”;

= &S$Sa;

&Sb;

= “chisel”;

var dump ($a, $b, $c);
string(6) "chisel"
string(6) "chisel"
string(6) "chisel"

xdebug debug zval('a', 'b', 'c');

a:
b:
c:

(refcount=3, is ref=1)='chisel'
(refcount=3, is ref=1)='chisel'
(refcount=3, is ref=1)='chisel'

Stack

chisel

Heap

e Memory is allocated for Sentity.

Sentity = Entity:load(‘'123’);
updateOwner ($entity) ;
// program continues...

...data...
(ref_count=1)

function updateOwner ($node) {
$node->setOwner ('1l') ;
$node->save () ;

} entity ZVAL

Stack Heap

e Step into the updateOwner function
where node is created as a soft
reference.

Sentity = Entity:load(‘'123’);
updateOwner ($entity) ;
// program continues...

...data...
(ref_count=2)

function updateOwner ($node) {
$node->setOwner ('1l') ;
$node->save () ;

}

node ZVAL
entity ZVAL

Stack Heap

e PHP performs as copy-on-write,
allocating memory for node.

...data...
(ref_count=1)

Sentity = Entity:load(‘'123’);
updateOwner ($entity) ;
// program continues...

...data...
(ref_count=1)

function updateOwner ($node) {
$node->setOwner ('1l') ;
$node->save () ;

}

node ZVAL
entity ZVAL

Stack Heap

e Once node goes out of scopem the
reference count decreases by 1.

e But heap memory is persistent by
default.

Sentity = Entity:load(‘'123’);
updateOwner ($entity) ;
// program continues...

function updateOwner ($node) {
$node->setOwner ('1l') ;
$node->save () ;

}

entity ZVAL

Stack

...data...
(ref_count=0)

...data...
(ref_count=1)

Heap

e Butnoworry of a leak, as the PHP
garbage collector frees memory once
the ref_countis 0.

Sentity = Entity:load(‘'123’);
updateOwner ($entity) ;
// program continues...

...data...
(ref_count=1)

function updateOwner ($node) {
$node->setOwner ('1l') ;
$node->save () ;

} entity ZVAL

Stack Heap

e Unsetting a variable will also
decrement the reference counter,
letting us free unused memory.

Sentity = Entity:load(‘'123’);
updateOwner ($entity) ;
unset ($Sentity) ;

function updateOwner ($node) {
$node->setOwner ('1l') ;
$node->save () ;

}

Stack Heap

Nuff talk.
Let’ s code.

Don’t overuse arrays

Leverage Copy on Write to reduce memory footprint
Unset variables no longer needed

Use small functions to allow GC to free unused memory

Monitor memory usage

https://github.com/nJim/php-memory
Jim.Vomero@FourKitchens.com 4 { FOUR

¢ Y & @nJim KITCHENS

COMING UP NEXT!

DRUPAL CAMP ASHEVILLE
10TH ANNIVERSARY

20@21

e 1:.45pm-2pm EDT: Expo Hall & Networking

e 2pm-2:45pm EDT: Sessions
o How Project Management Empowers Accessibility
o Words Matter: The Language of Accessibility
o Elevating your skills: Clear intro of tools & tech to learn next!

o Getting Started With Layout Builder for Drupal 8 & 9

