
When Roles Aren't
Enough
Modern Permissions in Drupal with the Access Policy API

Michael Harris @miwayha

Access Policy API: A Brief History

Limitations of Roles and
Permissions

Limitations of Roles and Permissions

1. Problems with Too Few Roles

2. Problems with Too Many Roles

3. Problems with Static Permission and Custom Access Logic

Static Permission and Custom Access Logic

Your business requirements might might mean

access is based on context:

● time

● session attributes

● user attributes

● entity values

● configuration

Your custom access logic is hard to find in your
code base:

● route _custom_acces
● form alters
● node grants
● hook_entity_access()
● hook_entity_field_access()
● render array #access
● menu plugin isEnabled()

Meet the Access Policy API

Meet the Access Policy API

\Drupal\Core\Session\AccessPolicyInterface::calculatePermissions()

● Adds permission to a user

● Place to add Cache tags, max-age

\Drupal\Core\Session\AccessPolicyInterface::calculatePermissions()

● Remove permissions from a user

● Place to add Cache tags, max-age

\Drupal\Core\Session\AccessPolicyInterface::getPersistentCacheContexts()

● Place to add cache contexts

Demos

Should I Use the Access Policy
API

You Already Are

User::hasPermission (Drupal < 10.3)

public function hasPermission($permission) {

 ...

 return $this→getRoleStorage()

 →isPermissionInRoles($permission, $this→getRoles());

}

User::hasPermission (Drupal > 10.3)

public function hasPermission($permission) {

 ...

 return \Drupal::service('permission_checker')

 →hasPermission($permission, $this);

}

core.services.yml (Drupal > 10.3)

permission_checker:
 class: Drupal\Core\Session\PermissionChecker
 arguments: ['@access_policy_processor']

core.services.yml (Drupal > 10.3)

 access_policy.user_roles:
 class: Drupal\Core\Session\UserRolesAccessPolicy
 arguments: ['@entity_type.manager']
 tags:

- { name: access_policy }

But Maybe You Should Write Your
Own

Use Cases

● You have a lot of authenticated users with different access needs

● Your access control needs vary based on time, location, configuration, entity

values, user attributes, etc.

● You can model your access needs with permissions, but things start to get fuzzy

when you switch from permissions to roles

● You're comfortable with cache tags, contexts, and max-age

Final Thoughts

Modules that use the Accecss Policy API

● Group

● External Roles

● Inline Permissions

https://www.drupal.org/project/group
https://www.drupal.org/project/external_roles
https://www.drupal.org/project/inline_permissions

Resources

● Introducing the new Access Policy API in Drupal Core - DrupalCon
Barcelona 2024

● New access policy API Change Record - Drupal.org
● Super user access policy can be turned off Change Record - Drupal.org
● Access Policy API Documentation - Drupal.org
● Episode #472 - Talking Drupal
● Drupal Access Policy API demystified - Luca Lusso (SparkFabrik)
● api.drupal.org:

○ AccessPolicyInterface
○ AccessPolicyBase

https://drupal.tv/events/drupalcon/drupalcon-barcelona-2024/introducing-new-access-policy-api-drupal-core
https://www.drupal.org/node/3385551
https://www.drupal.org/node/2910500
https://www.drupal.org/docs/develop/drupal-apis/access-policy-api
https://www.youtube.com/watch?v=9PrgDgRE5Yw
https://tech.sparkfabrik.com/en/blog/drupal-access-policy-demystified/

